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The steady two-dimensional laminar flow of an air stream, flowing past a solid surface
at high Reynolds number, is examined in the presence of rainfall. As raindrops
sediment on the surface they coalesce and form a continuous water film that flows
due to shear, pressure drop and gravity, in general. In the limit as the boundary
layer and film thickness remain smaller than the radius of curvature of the surface a
simplified lubrication-type formulation describes the flow field in the film, whereas the
usual boundary layer formulation is applied in the gas phase. In the case of a flat plate
and close to the leading edge, x → 0, a piecewise-self-similar solution is obtained,
according to which creeping flow conditions prevail in the film and its thickness
grows like x3/4, whereas the Blasius solution is recovered in the air stream. Numerical
solution of the governing equations in the two phases and for the entire range of
distances from the leading edge, x = O(1), shows that the film thickness increases as
the rainfall rate, ṙ, increases or as the free-stream velocity, U∞, decreases and that
the region of validity of the asymptotic result covers a wide range of the relevant
problem parameters. In the case of flow past a NACA-0008 airfoil at zero angle
of attack a Goldstein singularity may appear far downstream on the airfoil surface
due to adverse pressure gradients, indicating flow reversal and eddy formation inside
the liquid film, and, possibly, flow separation. However, when the effect of gravity
becomes evident in the film flow, as the Froude number decreases, and provided
gravity acts in such a way as to negate the effect of the adverse pressure gradient,
the location of the singularity is displaced towards the trailing edge of the airfoil and
the flow pattern resembles that for flow past a flat plate. The opposite happens when
gravity is aligned with the adverse pressure gradient. In addition it was found that
there exists a critical water film thickness beyond which the film has a lubricating
effect delaying the appearance of the singularity. Below this threshold the presence of
the liquid film actually enhances the formation of the singularity.

1. Introduction
Dynamic interaction between a thin liquid film that grows on a solid surface and

a gaseous boundary layer that surrounds the film and drives it to motion plays a
key role (Campbell & Bezos 1989) in the performance loss that is often observed
(Bezos et al. 1992) in wind tunnel tests of commercial airfoils under simulated
rainfall conditions. In fact, intense rainfall and high wind shear are believed to
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have caused a number of aircraft accidents that occurred under adverse weather
conditions. Experimental investigations conducted at the NASA-Langley Low-Speed
Wind-Tunnel facility (Hastings & Manuel 1985; Feo & Gonzalez 1988) captured the
evolution of a continuous film as well as the formation of longitudinal waves on its
interface, on either side of a NACA 64-210 airfoil under varying simulated rainfall
conditions. Measurements on the upper airfoil surface for small angles of attack
revealed a trend towards larger film thickness with increasing rainfall rate, ṙ, and
decreasing Reynolds number, Re. In addition the film thickness invariably exhibited
a maximum in the vicinity of the position of maximum airfoil thickness followed by
a reduction in magnitude until, eventually, its continuity was disrupted halfway along
the airfoil due to the formation of rivulets that evolved in the spanwise direction. It
should be noted that film thickness as high as twice the local boundary layer thickness
was measured, near the x′/c = 0.3 location, in this set of experiments; c is the chord
length and x′ denotes distance from the leading edge along the chord. As a result
the above researchers were lead to the conjecture that the water film on the upper
airfoil surface may be responsible for premature boundary layer separation, which
also explains the reduction in the lift coefficient that is often observed under rainfall
conditions.

As will be seen in the following sections such a flow pattern cannot be predicted by
steady calculations only and the dynamic behaviour of the gas boundary layer/liquid
film system has to be considered before a definite mechanism can be identified.
However, a reliable base flow is essential for stability analysis to capture the actual
transient response of the system. Previous studies focusing on the stability of two-
phase flow at high Re (Hooper & Boyd 1987; Yih 1990) prescribe a piecewise linear
velocity profile or a linear profile inside the film and a Blasius profile in the gas
phase, while assuming rather than finding the location of the interface, thus failing
to capture the evolution of film thickness in x in the base flow. This was remedied
in a recent study by Nelson, Alving & Joseph (1995), where the asymptotic solution
of the two-fluid boundary layer over a flat plate was obtained as the dimensionless
distance from the leading edge increases, ξ → ∞, for constant volume flow rate Q

of the water layer; ξ =
(
x′/
(
2ν/U∞

))1/2
is scaled via the viscous penetration depth

2ν/U∞ where U∞ denotes the free-stream velocity and ν the kinematic viscosity of
air. In this context they found that the gas–liquid interface grows like x′1/4 when the
boundary layer in the air grows like x′1/2, as part of a coupled self-similar solution
according to which, as x′ → ∞, both water and air satisfy the Blasius boundary layer
equations with a linear profile in the water and the flat-plate Blasius profile in the
air. In other words, asymptotically, creeping flow conditions prevail in the film. This
velocity profile, albeit without accounting for the predicted x-dependence of the base
flow, has been used as the basis for a stability analysis by Timoshin (1997) in his
study on high-Re instabilities in film-coated flows and by Ozgen, Degrez & Sarma
(1998) in their study on the effect of de/anti-icing fluids on boundary layer stability.

Assuming simple shear in the water film amounts to neglecting film inertia in
obtaining the base flow configuration. This may prove to be an important factor
in the determination of the stability characteristics of the air–water system. In a
different context, namely that of buoyancy-driven convection flow in settling vessels
with inclined walls, it was shown by Shaqfeh & Acrivos (1987) that accounting for flow
configuration inside the film of clear fluid that is generated on the downward facing
surface of a settler can have a significant effect on the stability of the two-fluid system.
This inertia is created as a result of the density difference between the clear fluid and
the solid particles that are suspended in the liquid mixture contained in the settler.
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The above researchers were able to do that by extending a base flow configuration
previously obtained by Acrivos & Herbolzheimer (1979) which only accounted for the
balance between buoyancy and shear in the clear fluid film. Shaqfeh & Acrivos (1986)
extended the above base flow to account for film inertia, thus obtaining an improved
structure that reduced to the one presented by Acrivos & Herbolzheimer in the limit
as x′ → 0; x′ in this case denotes distance from the location on the plate where
formation of the clear fluid layer is initiated. Stimulated by these findings and by the
fact that, under intense rainfall, the water film inertia might become important, we
have developed a model that accounts for the constant entrainment of water droplets
in the film as well as film inertia.

The airstream is assumed to carry with it raindrops at a concentration too low,
even for very large rainfall rates, to affect its dynamics. Even though raindrops can
be as large as several mm in diameter, for the purposes of our study and following
experimental investigations with water spray systems that produced clouds of droplets
with mean droplet size as small as 20µm (Thompson, Jang & Dion 1995), we take
the drop size to be small so that the inertia of the droplets is negligible. It can
be easily seen that for such small particle sizes the particles’ Reynolds number, as
defined via the Stokes velocity or via the shear due to the boundary layer, is very
small. In addition, the shape of the raindrops is assumed to be nearly spherical since
surface tension forces will not allow significant shape perturbations for such small
particle size. As the rain particles sediment due to gravity they reach the airfoil, at
a certain rainfall rate ṙ, where they coalesce and form a liquid film that flows under
the action of shear from the gas stream. This flow pattern of shear-driven flow of a
layer that is formed due to sedimentation of particles carried by a surrounding stream
resembles the flow situation studied by Pelekasis & Acrivos (1995) in the context of
convection and sedimentation of solid particles past a flat plate. Of course in the
latter study solid particles do not coalesce. Rather they form a diffusion layer where
their concentration increases from that in the free stream to their value on the plate
as a result of the interplay between sedimentation and shear-induced resuspension.
Nevertheless, certain similarities do exist between the two problems. Most notably, the
combination of the shear stress balance and the mass balance at the interface between
the gas stream and the concentrated particle layer (water film in the present study)
gives rise to a similarity solution that describes the evolution of the particle layer near
the leading edge of the plate. As will be seen in the next section this is possible in
the context of the present study as well. The flow is taken to be laminar despite the
fact that most modern wing sections are designed for very large Reynolds numbers.
At this stage this will not pose any serious problem since the loss in performance
has been observed in laminar airfoils as well (Thompson et al. 1995). It should also
be noted that, if needed, turbulent boundary layers may be examined by considering
alternative mean velocity distributions (Benjamin 1958).

Proceeding along these lines the steady evolution of the liquid film, flowing mainly
under the action of shear from the air stream, is captured until the point where a
Goldstein singularity appears (Goldstein 1948). This type of singularity is normally
associated with points of zero shear at a solid wall and usually indicates flow
separation. However, this is not always the case. Boundary layer singularities, in
general, indicate flow reversal and are considered to be eddy creation mechanisms
(Bhaskaran & Rothmayer 1998) that may or may not lead to separation. Since proper
identification of the point of separation in the context of two-phase flow is not within
the scope of the present study, we will refer to points of zero shear arising on the
airfoil surface as Goldstein singularities or as points of flow reversal. Nevertheless, the



82 D. N. Smyrnaios, N. A. Pelekasis and J. A. Tsamopoulos

existence of such points can be used as a rough measure of the facility by which the
air stream flows past a solid surface in the presence of a growing film and extensive
reference will be made to them, upon their appearance, in § 5 where our results are
discussed. In fact, it will be seen that film growth may enhance flow reversal, and
consequently impair the flow of the air stream, below a certain, critical value of the
rainfall rate. Beyond this value the film acts as a lubricant delaying the appearance
of the Goldstein singularity.

The interaction between a growing liquid film, flowing due to the action of shear
from a surrounding gas stream, and the stream can also play an important role in the
context of heat transfer when the operating fluid is in the form of saturated vapour
that is force-convected through the void space of a heat exchanger (Beckett & Poots
1972). As a result of the heat transfer process a film of condensate is formed that
flows due to shear and, possibly, gravity. The interaction between the condensate and
the vapour stream can have a significant effect on the heat transfer coefficient of
the process, while wave formation can lead to quite similar flow patterns to the ones
described at the beginning of this section. The steady-state evolution and growth of
the condensate film can be obtained in a fashion similar to the rainfall problem. The
case for film condensation under mixed forced–free convection past a vertical flat
plate has been presented by Shu & Wilks (1995).

In § 2 the problem formulation at steady state is presented for two-dimensional
flow of a gas stream past a curved solid surface on which a water film is generated,
due to rainfall, and flows under the action of shear, pressure drop and gravity, in
general. The specific model of rainfall is given in § 2.1 and the governing equations of
the problem are written in § 2.2, based on the assumption that the radius of curvature
of the surface is much larger than the boundary layer thickness. The leading-order
asymptotic solution for flow past a flat plate is presented in § 3.1.1 as ε→ 0 or x→ 0;
ε characterizes the ratio of film to boundary layer thickness whereas, the x-coordinate
signifies the dimensionless distance from the leading edge of the plate. Corrections to
the leading-order solution are obtained in § 3.1.2 in increasing powers of x. In § 3.2.1
the limit ε → 0 is investigated for flow past a general solid surface with large radius
of curvature while in § 3.2.2 and § 3.2.3 certain aspects of the NACA-0008 airfoil,
which is the one that is investigated here as an example, are presented and discussed.
Next, in § 4 the numerical method of solution of the full equations valid for x = O(1)
for a general curved surface is given. In § 5 the results of numerical simulations for
flow past a flat plate and past a NACA-0008 airfoil are presented in the context of a
parametric study and the effects of rainfall rate, ṙ, and free-stream velocity, U∞, are
discussed. Finally, in § 6 conclusions are drawn regarding the present as well as future
investigations on the problem of performance loss due to rainfall.

2. Problem formulation
We wish to examine the two-dimensional laminar flow of an air stream at high

Re ≡ U∞L/ν, under conditions of rainfall, characterized by a constant rainfall rate,
ṙ, past a solid surface. As mentioned before, the rain particle concentration in the
gas phase is assumed to be too low to affect its dynamics. Therefore, the gas phase is
treated as a pure fluid. Zero angle of attack is assumed for simplicity. Thus, far from
the surface the air velocity assumes its free-stream value, U∞ parallel either to a flat
plate or to the chord-line of an airfoil, and at angle π/2− β with respect to gravity;
see the schematic diagram in figure 1. Parameter β is defined as the angle between the
gravity vector and the line perpendicular to the chord line of the surface. It assumes
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Figure 1. Schematic representation of the flow of a gas stream past an airfoil
under conditions of rainfall.

positive (negative) values in order to simulate take-off (landing) of the plane. In
order to simulate rainfall conditions, the air stream is assumed to be carrying along
raindrops which, as they sediment on the plate, coalesce immediately and form a thin
water film that covers the wing entirely and flows under the action of shear from the
air stream. In reality there will be a small region near the leading edge of the wing
where impact splashing takes place. Water ejecta from drop impacts interact with
the boundary layer, while water drop cratering in the film generates an equivalent
surface roughness, thus affecting the aerodynamic behaviour of the wing. We will
neglect these two effects since, at the present stage of the analysis, we are interested
in finding a quantitative relation between rainfall rate and interfacial wave formation
and growth.

2.1. Modelling of rainfall

As a result of their small size the inertia of raindrops is very small, while their
shape remains spherical due to surface tension. This allows their treatment in a
fashion similar to that presented by Pelekasis & Acrivos (1995) in their study on
sedimentation of solid particles that are convected past a flat plate. Thus, following
the above investigators, the particle velocity in the air stream, u′p, is taken to be the

sum of the local bulk velocity, U ′, and the particle slip velocity, u′s, with the primes
indicating dimensional quantities:

u′p = U ′ + u′s, u′s = utf(φ)
g

g
, (2.1)

where g is the gravitational acceleration, ut is the Stokes terminal velocity, f(φ) is a
hindrance function accounting for the influence of particle interactions; due to small
particle size and concentration f(φ) ≈ 1. The first equality in (2.1) presupposes that
the particle Reynolds number, whether in terms of the sedimentation velocity, or the
local bulk shear rate, is vanishingly small,

Re1 ≡ utaρ

µ
, Re2 ≡

[
U∞(LU∞/ν)1/2

L

]
a2

ν
, (2.2)
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where ρ, µ, ν denote density, viscosity and kinematic viscosity of air, respectively, a
is the characteristic radius of raindrops and L the characteristic length scale along
the surface, normally the chord length of a model wing section. When L ≈ 30 cm,
U∞ ≈ 12 m s−1 (Re = 2.4×105), a ≈ 20 µm, the two dimensionless numbers in equation
(2.2) become Re1 ≈ 0.07, Re2 ≈ 0.5.

The location of the air–water interface is determined by the mass balance of
raindrops crossing the interface,

n · (U ′ + u′s)φs = u′ · n, (2.3)

where n is the normal vector at the interface pointing towards the gas stream, φs is
the particle volume fraction in the gas stream, and u′ is the velocity at the interface
and on the side of the film. In the following, variables in capital letters correspond
to quantities defined in the gas phase, whereas variables in lower-case letters refer to
the water film. Further manipulation of equation (2.3) gives

φsutf(φs)eg · n = u′ · n− φsU ′ · n⇒ φsutf(φs)eg · n = u′n(1− φs), (2.4)

where eg is the unit vector in the direction of gravity. In the last equality use has
been made on the fact that the bulk normal velocity is continuous at the interface
(U ′ = u′). From previous studies (Dunham 1987), it has been established that the
rainfall rate, ṙ, which is normally given by meteorological data for every geographical
location, can be estimated through the rain particle concentration in the air and the
terminal velocity as

ṙ = utf(φs)φs. (2.5)

Consequently equation (2.4) becomes

ṙeg · n = u′n(1− φs)⇒ ṙeg · n = u′n. (2.6)

The last equality is a result of the assumption that the particle volume fraction, φs,
in the gas stream is very small. At this point it becomes evident that the difference
between the present model and the one presented by Nelson et al. (1995) lies in the
fact that in the latter a constant volumetric flow rate Q is prescribed for the film
in the longitudinal direction, whereas here a constant drop influx, ṙ, is prescribed at
every downstream position along the interface.

2.2. Governing equations

We now describe the flow inside the film and the boundary layer. To this end,
we assume that the radius of curvature of the solid surface is much larger than
the boundary layer or the film thickness. This is a commonly used assumption
that is relevant to the flow situation considered here and simplifies the resulting
equations significantly. As a result the flow domain is now described via a new set
of coordinates, x, y, which are defined as distances measured along the solid surface
and at right-angles to it, figure 1, so that they define a set of orthogonal curvilinear
coordinates (Rosenhead 1963). Furthermore, assuming that all changes in physical
quantities in the x-direction occur on a much larger length scale, L, than the film,
Hf , and boundary layer, LRe−1/2, thickness we can drop variations in the x-direction
compared with variations normal to the solid surface (or the interface) as is normally
done in boundary layer and lubrication theory; Hf is the characteristic film thickness,
to be given a specific value later together with the characteristic film velocity, uf , in
the x-direction, and LRe−1/2 is an estimate for the boundary layer thickness. In this
context, and in terms of the curvilinear (x, y) coordinate system the flow description
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in the gas phase assumes the familiar boundary layer form obtained for Cartesian
coordinates, whereas lubrication-type equations govern the motion of the film.

Dependent variables characterizing the flow are non-dimensionalized using the
following scaling quantities: L, LRe−1/2, as characteristic length scales of the boundary
layer type in the direction parallel to the solid surface, x, and perpendicular to it, Y ,
in the gas phase, respectively, U∞, U∞Re−1/2, as characteristic velocities along the x-
and Y -directions in the gas phase, respectively, L,Hf , as characteristic length scales
in the liquid film in the direction parallel to the solid surface, x, and perpendicular to
it, y, respectively, uf, uf Hf/L, as characteristic velocities along the x- and y-directions
in the liquid film, respectively and ρU2∞, as the inertial scale for pressure in both
phases. It should be noted that gravity has been incorporated in the pressure term in
both phases. This ensures that pressure in the gas phase approaches that obtained for
standard potential flow in the limit Y → ∞, while introducing a buoyancy-type term
in the momentum equation of the film. In this context, and ignoring terms which are
O(Re−1/2), O(Hf/L), or smaller, the governing equations become in the gas phase (in
the following dependent variables pertaining to the gas phase are indicated by an
upper case):

potential flow in the far field

Y →∞, U → Up(x), (2.7)

x-momentum

U
∂U

∂x
+ V

∂U

∂Y
= −dP

dx
+
∂2U

∂Y 2
, (2.8)

Y -momentum
∂P

∂Y
= 0, (2.9)

continuity

∂U

∂x
+
∂V

∂Y
= 0. (2.10)

At the gas–liquid interface Y = εH(x), y = H(x):

continuity of tangential and normal velocity

U = ε
µ

µw
u, V = ε2

µ

µw
v, (2.11a, b)

continuity of tangential and normal stress

µ

µw

Hf

uf

U∞
LRe−1/2

∂U

∂Y
=
∂u

∂y
, P = p, (2.12a, b)

liquid mass balance upon evaluating (2.6) at the interface(
cos β

∂y

∂y0

− sin β
∂y

∂x0

)
=
ufHf

ṙL

(
u

dH

dx
− v
)

; (2.13)

and in the water film (in the following dependent variables pertaining to the film are
indicated by a lower case):

continuity

∂u

∂x
+
∂v

∂y
= 0, (2.14)
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x-momentum

ε2
ρw

ρ

(
µ

µw

)2(
u
∂u

∂x
+ v

∂u

∂y

)
=−dp

dx
+

1

Fr

(
ρw

ρ
− 1

)(
sin β

∂x

∂x0

− cos β
∂x

∂y0

)
+

1

ε

∂2u

∂y2
,

(2.15)

y-momentum

∂p

∂y
=
gHf

U2∞

(
ρw

ρ
− 1

)(
sin β

∂y

∂x0

− cos β
∂y

∂y0

)
, (2.16)

no-slip and no-penetration on the solid surface

u = v = 0 at y = 0. (2.17)

In the above ε ≡ Hf/(LRe
−1/2) is a measure of the ratio between the film and the

boundary layer thickness, x0, y0, denote Cartesian coordinates defined in the direction
of the oncoming flow and perpendicular to it (figure 1), respectively, scaled with
L,Up(x) is the potential flow solution for flow around the solid surface, scaled with
U∞ and the subscript w signifies physical properties in the liquid film. It should also
be noted that the direct boundary layer calculation is adopted here and the pressure
drop inside the film is prescribed by flow conditions in the far field, as can also
be surmised by the treatment of pressure variation inside the two phases. Owing
to the large radius of curvature of the surface, partial derivatives of the curvilinear
coordinates, x, y, with respect to x0 and y0 are evaluated at the solid surface and take
the form

∂x

∂x0

=
1√

1 + (dS/dx0)2

(
1 + O

(
Hf

k

)
z

)
,

∂x

∂y0

=
dS/dx0√

1 + (dS/dx0)2

(
1 + O

(
Hf

k

)
z

)
,

(2.18)

∂y

∂x0

= − dS/dx0√
1 + (dS/dx0)2

,
∂y

∂y0

=
1√

1 + (dS/dx0)2
, (2.19)

where k is a measure of the surface radius of curvature and y0 = S(x0) denotes the
shape of the solid surface, also scaled with L.

In order to balance terms in the tangential stress balance (2.12a), and the liquid
mass balance, (2.13), we define, uf and Hf such that

uf

ṙ

Hf

L
= 1,

uf

U∞
µw

µ
=

Hf

LRe−1/2
.

Thus, we obtain a measure for the film thickness, Hf , and the film velocity uf ,

Hf

L
= Re−1/4

(
µw

µ

)1/2(
ṙ

U∞

)1/2

, (2.20)

uf

U∞
= Re1/4

(
µ

µw

)1/2(
ṙ

U∞

)1/2

. (2.21)

Consequently, the steady state of the air–water system can be calculated via solution of
(2.7)–(2.17), given the following parameters of the problem: the air to water viscosity
ratio, µ/µw , the air to water density ratio, ρ/ρw , the thickness ratio between the film
and the boundary layer in the air stream, ε, the angle, β, between gravity and the
negative y0-direction of the solid surface, and the Froude number, Fr ≡ U2∞/(gL). The
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effect of surface tension on the normal force balance, (2.12b), has been neglected and
the effect of gravity on the pressure drop across the water film, (2.16), will be neglected
owing to the small value of the inverse Weber number, We−1 ≡ (σ/ρU2∞)(Hf/L

2),
and the large value of the ‘transverse’ Froude number, Fry = U2∞/(gHf) = FrL/Hf .
In particular, integration of the transverse pressure drop, (2.16), along the y-direction
and application of the normal force balance, (2.12b), provides the pressure inside the
film and consequently the longitudinal pressure drop as a function of that in the air:

∂p

∂x
=
∂P

∂x
− gHf

U2∞

(
ρw

ρ
− 1

)
d

dx

[
H(x)

(
sin β

∂y

∂x0

− cos β
∂y

∂y0

)]
.

Thus, the contribution due to the film thickness variation is O(Hf/L) smaller than
the gravitational one. Finally, as can be seen from the x-momentum equation (2.15)
in the water film, the motion of the film is determined by the longitudinal pressure
drop, dP/dx, which is imposed on it from the boundary layer in the gas stream, by
shear forces, (1/ε)(∂2u/∂y2), whose relative magnitude increases with decreasing film
thickness or decreasing ε, and gravity,

1

Fr

(
ρw

ρ
− 1

)(
sin β

∂x

∂x0

− cos β
∂x

∂y0

)
,

whose magnitude is characterized by 1/Fr, β, and ρw/ρ.

3. Asymptotic solution
3.1. Flow past a flat plate

As a first step towards understanding better the behaviour of the air–water system
under conditions of rainfall, we study flow past a flat plate when gravity is at right-
angles to the oncoming flow, β = 0. In this case S(x0) = 0 while the Cartesian and
curvilinear coordinate systems coincide. The motion of the film is due solely to the
shear stress exerted upon it from the surrounding gas stream, whereas pressure drop
and gravity vanish due to the geometry.

3.1.1. Solution when ε = 0, or x = 0

As can be easily seen from the set of equations given in the previous section, when
the film thickness is much smaller than the boundary layer thickness, ε→ 0, the flow
pattern in the gas phase is described by the usual Blasius equations, whereas creeping
flow conditions exist in the water film with the shear rate remaining constant at
each downstream location as prescribed by the Blasius solution at the interface. At
the same time the thickness of the film is given by the particle mass balance. More
specifically, the solution for the film flow becomes

H0(x) = x3/4

√
2

0.332
, u0 = x1/4

√
0.664

y

H0(x)
, v0 =

1

2

(
y

H0(x)

)2

, (3.1)

with subscript zero indicating that this solution corresponds to the leading-order,
O(ε0), term of an expansion in powers of ε. Clearly, then, this solution resembles the
asymptotic result of Nelson et al. (1995) in that it neglects the effect of interia in the
film while adopting the Blasius profile in the gas phase. The basic differences between
the two lie in the growth rate of the film thickness, x3/4 vs. x1/4, and the fact that, as
will be seen in the next section, inertia becomes important here as x increases.
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3.1.2. Higher-order corrections

The parameter ε essentially defines a new length scale, L∗, for which the thickness
of the two layers become comparable, i.e.

ε =
Hf

LRe−1/2
=
LRe−1/4(µw/µ)1/2(ṙ/U∞)1/2

LRe−1/2
= 1.

Then, it can be shown that the asymptotic solution obtained in the previous section in
the limit ε→ 0 can be recovered as the leading-order term, O(x0), of an expansion in
rising powers of x, with x→ 0 signifying distances from the leading edge of the plate
for which, x′ � L∗. Indeed setting ε = 1 gives rise to the following set of equations in
the gas phase:
free-stream condition

Y →∞, U → 1, (3.2)

x-momentum

U
∂U

∂x
+ V

∂U

∂Y
=
∂2U

∂Y 2
, (3.3)

continuity

∂U

∂x
+
∂V

∂Y
= 0; (3.4)

on the film/air interface, Y = y = H(x):
continuity of tangential and normal velocity

U =
µ

µw
u, V =

µ

µw
v, (3.5a, b)

continuity of tangential stress

∂U

∂Y
=
∂u

∂y
, (3.6)

particle mass balance

u
dH

dx
− v = 1; (3.7)

and in the water film:

x-momentum

ρw

ρ

(
µ

µw

)2(
u
∂u

∂x
+ v

∂u

∂y

)
=
∂2u

∂y2
, (3.8)

continuity

∂u

∂x
+
∂v

∂y
= 0, (3.9)

no-slip and no-penetration at the solid surface

u = v = 0 at y = 0. (3.10)

This set of equations admits a series solution for the boundary layer

U =

∞∑
κ=0

xκ/4F ′κ(η), V =

∞∑
κ=0

xκ/4−1/2

(
ηF ′κ(η)

2

(
κ

4
− 1

2

)
Fκ(η)

)
, η ≡ Y

x1/2
, (3.11)
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for the location of the interface

H(x) =

∞∑
κ=0

Aκx
(κ+3)/4, (3.12)

and for the water film

u =

∞∑
κ=0

G′κ(z)x
(κ+1)/4, v =

∞∑
κ=0

xκ/4
κ∑
j=0

Aκ

(
zG′κ−j(η)

j + 3

4
− Gκ−j(η)

κ+ 4

4

)
,

z ≡ y

H(x)
.


(3.13)

The leading-order terms in the above expansions satisfy the Blasius equation in the
gas stream

2F ′′′0 + F ′′0F0 = 0 with F ′(η →∞) = 1 and F(η = 0) = F ′(η = 0) = 0, (3.14)

continuity of shear and mass balance at the interface

F ′′0 (η = 0) =
G′′0(z = 1)

A0

, A0 =
1

G0(z = 1)
, (3.15)

whereas creeping flow prevails in the film

G′′′0 (z) = 0, (3.16a)

with the usual no-slip, no-penetration conditions at the solid surface

G0(z = 0) = G′0(z = 0) = 0. (3.16b)

Thus, we obtain G0(z) =
√

0.332/2z2, A0 =
√

2/0.332. This is the same solution
as the one presented in § 3.1.1 when ε was set to 0. The first correction to the
leading-order solution satisfies the following set of equations: in the gas phase

F ′1(η →∞) = 0, F ′′′1 +
F ′′1F0

2
− F ′1F ′0

4
+

3

4
F ′′0F1 = 0, (3.17)

at the interface η = 0, z = 1

F1 = 0 F ′1 = −A0F
′′
0 +

µ

µw
G′0, (3.18a, b)

A1 = −A0

G1

G0

, G′′1 = A0F
′′
1 + A2

0F
′′′
0 + A1F

′′
0 , (3.18c, d )

and in the film,

G′′′1 = 0 with G1(z = 0) = G′1(z = 0) = 0, (3.19)

reflecting the effect of increased displacement thickness due to the film growth.
Using information from the leading-order solution, (3.17) and (3.18a, b) can be

solved to give F1(η) leaving (3.18c, d) and (3.19) for calculating A1 and G1(z). In fact,
from (3.17) we obtain that F1 = c0F

′
0, where c0 is a constant to be evaluated using

(3.18b). Thus, (3.18d) gives G′′1(z = 1) = 0, and consequently from (3.18c)A1 = 0 and
the O(x) correction for the film thickness is zero. Figure 2 shows the evolution of
the film thickness as predicted by the leading-order approximation and as calculated
via numerical solution of (3.2)–(3.10) as discussed in § 4. Due to the vanishing first-
order correction, the leading-order solution for the film thickness provides a reliable
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Figure 2. Evolution of the dimensionless film thickness H with increasing distance x from the
leading edge as predicted by the zeroth order asymptotic solution, and as calculated by the
numerical solution of the full equations.

prediction of the full problem even when x = O(1). The deviation between the leading
order, O(x3/4), prediction for the film thickness and the numerical solution increases
when x � 1, basically due to the effect of inertia as can be surmised from the fact
that the creeping flow result over-predicts the film thickness. The delayed appearance
of the effect of inertia can be explained by resorting to the series solution of the
problem and noting that the left-hand side of (3.8) will first contribute to the series
solution at third order, since G′′′0 (z) = G′′′1 (z) = G′′′2 (z) = 0.

A similar series solution has been obtained by Beckett & Poots (1972) for flow
past a flat plate at high Re in the presence of film condensation, albeit in the form
of a power series in ε. It should be pointed out that the series expansion in powers
of x1/4, for fixed ε = 1, that was given above can also be viewed as an expansion
in powers of ε, ε � 1, with x remaining O(1) and scaled via L, which is treated as
an additional problem parameter. For example the longitudinal velocity in the gas
stream assumes the form U =

∑∞
κ=0 ε

κxκ/4F ′κ(η), and similarly for the rest of the
unknowns. This type of solution, whether in terms of x or in terms of ε, represents an
asymptotic series rather than a converging series; see also Bender & Orszag (1978).
It is not uncommon that such asymptotic solutions in terms of a small parameter
provide a reasonable approximation to the exact solution, sometimes, with increased
overall validity compared to existing converging series.

Indeed, the leading-order solution constitutes a valid base flow for a wide range of
the physical quantities that are relevant to our problem. For example, when a wing
section of 70 cm length is placed parallel to an air stream with free-stream velocity
10 m s−1, and subjected to a moderate rainfall rate ṙ = 100 mm h−1, which is a quite
realistic set of parameters for wind tunnel testing, setting ε = 1 gives L∗ ≈ 62 m.
Consequently, since L/L∗ ≈ 0.01, the entire wing lies in the region of validity of the
zeroth-order solution. However, as the rainfall rate increases, L∗ decreases significantly
and a tenfold increase of ṙ would yield L∗ ≈ 0.6 m, in which case film inertia starts
playing an important role in the problem.

3.2. Flow past a curved surface

Unlike the case for flow past a flat plate, when a general curved surface is considered
the solution in the two limits, ε → 0 and x → 0, does not behave in the same way.
Keeping in mind that we are mostly interested in surfaces with a rounded leading
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edge where the geometrical characteristics are distinctly different from the rest of the
surface we expect that the limit x→ 0 will present certain difficulties in the analysis.
In the following we discuss these issues and present the approach adopted in this
study in order to circumvent them.

3.2.1. Solution in the limit ε→ 0

When ε is very small the thickness of the film is negligible compared with that of
the boundary layer and the solution in the gas phase reduces to that obtained for dry
conditions in the air stream flowing past the same curved surface. This decouples the
solution in the gas phase which can now be solved independently to provide the shear
stress, f1(x) ≡ (∂U/∂Y )(Y = 0), at the interface, see also Rosenhead (1963). It can be
easily seen, by combining the definition of ε = Hf/(LRe

−1/2) with (2.11)–(2.17) and
(2.20), (2.21), that the problem formulation in the liquid film becomes in this limit

f1(x) =
∂u

∂y
, f3(x) = u

dH

dx
− v at y = H(x), (3.20)

∂u

∂x
+
∂v

∂y
= 0, (3.21)

∂2u

∂y2
= 0, (3.22)

u = v = 0 at y = 0, (3.23)

where

f1(x) ≡ ∂U

∂Y
(Y = 0), f3(x) ≡

(
cos β

∂y

∂y0

− sin β
∂y

∂x0

)
are introduced for convenience.

Film flow now occurs solely due to shear from the surrounding boundary layer,
while the velocity field and film thickness take the form

u = yf1(x), v = −y
2

2
f′1(x), H(x) =

2

∫ x

0

f3(x)dx

f1(x)


1/2

. (3.24)

As x → 0 the film thickness becomes H(0) = (2 sin β/(df1/dx)(x = 0))1/2. As will be
seen in the following, for the surface geometries considered here the flow near the
leading edge resembles flow in the neighbourhood of the forward stagnation point
of a cylinder due to the rounded shape of airfoils near the leading edge, in which
case (df1/dx) (x = 0) = 1.2325C 3/2; x → 0 Up ∼ xC , where C > 0 and is given in
the next section (see also Rosenhead 1963). On the other hand, when the angle β is
negative the prediction for the film thickness at the leading edge becomes unrealistic.
At this point further discussion is needed on the characteristics of the solid surface,
particularly near the leading edge, and the complications that may arise as a result
of that.

In an attempt to obtain a first-order correction in ε to the above leading-order
solution we note that, due to the small value of the viscosity ratio µ/µw for the
air/water system, and as long as the film thickness remains relatively small, the film
is, roughly, subjected to the shear stress f1(x), as this is provided by the solution for
a dry airfoil even when ε is O(1); see boundary condition (2.11a, b). In addition, as
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Figure 3. - - - -, Geometric shape of the NACA-0008 wing section; ——, tangential velocity on
the surface of a NACA-0008 airfoil as predicted by potential theory.

will be seen in the following, pressure drop dominates gravity for most of the flow
past an airfoil. As a result, longitudinal velocity satisfies, approximately, the following
equation:

∂2u

∂y2
= ε

∂p

∂x
, (3.25)

while the rest of the problem formulation remains the same as prescribed by (3.20),
(3.21) and (3.23). Then the longitudinal velocity in the film, u, and its thickness, H ,
are given by

u = ε
dp

dx

y2

2
+

(
f1 − εH dp

dx

)
y,

dH

dx
=
f3(x)− 1

2
H2 df1/dx+ ε 1

3
H3 d2p/dx2

Hf1(x)− ε (dp/dx)H2

(3.26)

The last equation will be very useful in explaining the results presented in § 5.2 for the
evolution of the film thickness with increasing ε for flow past a NACA-0008 airfoil.

3.2.2. Characteristics of the NACA-0008 airfoil

There are certain aspects of the treatment of the flow past a curved surface
that warrant special discussion. The first concerns the potential flow solution for an
airfoil. We chose to study flow at zero angle of attack past a NACA-0008 wing section,
which is an airfoil with well-documented aerodynamic properties that has a simple
thin symmetric shape, not dissimilar from that of a flat plate. Its maximum thickness
is 8% of its chord length and near the leading edge its shape approaches that of a
circle with radius of curvature, ρL, 0.7% of the chord length (Abbott & Doenhoff
1949). In order to obtain the potential flow solution for the velocity distribution along
the airfoil surface, to be used as the far-field velocity for the boundary layer solution,
we employed Theodorsen’s theory, a brief description of which is given below.

This approach initially utilizes a series of transformations in order to map the
original airfoil shape onto a circle. Then via the use of Poisson’s integral equation
(Thwaites 1960) the radius of the circle onto which the airfoil surface is mapped is
obtained as well as the angular distance ϕ(θ), that relates the arguments of the airfoil’s
complex representation in the original and transformed domains, as a function of
the polar angle θ. Finally, using the formula that gives the speed on the surface
of a cylinder, in conjunction with the Kutta–Joukowski condition that guarantees
finiteness of the velocity at the trailing edge, we obtain the velocity distribution on
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the airfoil surface (Thwaites 1960). Figure 3 shows the shape and tangential velocity
on the surface of the NACA-0008 airfoil as obtained by the above method. The
solution compares well with tabulated values at certain downstream locations along
the chord line which are available in the literature (Abbott & Doenhoff 1949). Its
validity is questionable near the trailing edge only, but this does not affect our analysis
since most of the dynamic phenomena that we are interested in capturing happen
long before the film reaches the region near the trailing edge.

The asymptotic solution for flow past a cylinder will be utilized in order to start the
time-like integration process in the x-direction for flow past a NACA-0008 airfoil. As
mentioned before, the shape of this airfoil near the leading edge resembles a circular
arc; in dimensional Cartesian coordinates y′0 ∝

√
2ρL
√
x′0 as x0 → 0 with ρL denoting

the leading-edge radius of curvature. Consequently, the velocity near the leading edge,
as predicted by potential flow considerations, behaves like Up ∝ 2xL/ρL = xC with
C = 285.7 for the type of airfoil considered here, which is the asymptotic behaviour
near the leading edge of the velocity distribution, Up = 2 sin θ with θ = 0 at the
leading edge, for potential flow past a cylinder at zero angle of attack; L denotes the
chord length of the airfoil that is used in order to scale distances x along its surface.
Then the well-known asymptotic solution for boundary layer flow past a cylinder
can be used, valid near the forward stagnation point, x → 0, according to which
the longitudinal velocity grows like x while the transversal velocity remains non-zero
(Rosenhead 1963).

This is a very important aspect of the flow past a curved surface, especially when
the effect of gravity is considered near the leading edge. In particular, for the two
cases of interest to us, corresponding to the position assumed by an airfoil during
landing or taking off, the angle β is such that the buoyancy force points towards
the lower part of the airfoil surface. Since this is the only force that survives in the
limit as x → 0, for an airfoil with a rounded leading edge resembling a circular
arc where pressure drop and shear vanish, it would tend to drive the film in the
opposite direction. This seems to be another problem pertaining to the solution near
the leading edge, besides the negative rain particle accumulation, f3(x = 0) < 0, when
β < 0. Despite all this it will be seen that such problems arise in such a narrow region
near x = 0, for the parameter range of interest here, that they do not really constitute
a serious drawback of the model. It is, anyway, well known that very close to the
leading edge the problem formulation that was given in the previous section is not
valid any more because x′ ≈ ν/U∞. Moreover, the radius of curvature of the airfoil
becomes much larger than the boundary layer thickness as x approaches zero.

Plotting f3 as a function of x when β takes values in the interval (−5◦, 5◦), which is
quite adequate for the purposes of our study, we can see that it can only be negative
when β is negative, and this only happens in a very narrow region near the leading
edge (0 6 x 6 0.001), becoming positive beyond this range of values, figure 4(a).
As far as the issue of the gravitational force pushing the film towards the lower
airfoil surface is concerned, careful examination of the x momentum reveals that the
negative pressure drop, −dp/dx, acquires huge values near the forward stagnation
point, even though it is zero when x = 0, to the extent that it dominates gravitational
forces for x values as small as 0.001. Figure 4(b) shows the evolution of

f2(x) = −dp

dx
+

(
ρw

ρ
− 1

)
1

Fr

(
sin β

∂x

∂x0

− cos β
∂x

∂y0

)
and −dp/dx, when β = 0◦ and Fr = 67, one of the lower values for Fr used in this
study, clearly demonstrating the dominance of the pressure term near x = 0, even
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Figure 4. (a) Evolution of the function f3(x), indicating the rate by which raindrops enter the water
film, for different values of angle β; (b) evolution of pressure drop, −dp/dx and function f2(x),
which contains both pressure drop and gravity.

though at x = 0 gravity is the only surviving force. This should be expected since

−dp

dx
= Up

dUp

dx
∝ 4x

(
L

ρL

)2

= 81632x

for a NACA-0008 airfoil, whereas(
ρw

ρ
− 1

)
1

Fr

(
sin β

∂x

∂x0

− cos β
∂x

∂y0

)
≈ −1000 cos β

50
≈ −20

near the leading edge. As a result

| − dp/dx|∣∣∣∣−dp

dx

∣∣∣∣+

∣∣∣∣(ρw − 1

ρ

)
1

Fr

(
sin β

∂x

∂x0

− cos β
∂x

∂y0

)∣∣∣∣ ≈ 0.8

when x is as small as 0.001.
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3.2.3. Solution near the leading edge

In view of the above aspects of the flow and in order to circumvent problems
arising near the forward stagnation point of the airfoil, we start integrating in the
x-direction (see description of the numerical method in § 4) at a streamwise position
xs located near, but not exactly at, the leading edge. The details of the flow in the
two phases at this point are obtained by solving the leading-order problem as x→ 0
assuming the usual flow structure near the forward stagnation point determined by
pressure and shear forces,

U ≈ Cx
df0

dη
, C = 2L/ρL, η = C1/2(Y − εH(x)),

u ≈ C1/2

H0

x
∂F0

∂z
, z =

y

H(x)
, H ≈ H0.

 (3.27)

In this fashion, functions f0, F0 and H0 are obtained by the following set of equations:

df0

dη
→ 1 as η →∞, (3.28)

d3f0

dη3
−
(

df0

dη

)2

+ f0

d2f0

dη2
+ 1 = 0, (3.29)

ε2
µ

µw
F(z = 1) = f(η = 0), H0C

df0

dη
(η = 0) =

µ

µw
ε
dF0

dz
(z = 1) at η = 0, z = 1,

(3.30)

H2
0C

d2f0

dη2
(η = 0) =

d2F

dz2
(z = 1), C1/2F(z = 1) = f3(xs), H0 = H(xs), (3.31)

CH0F0

d2F0

dη2

ρw

ρ

(
µ

µw

)2

ε2 − ε2ρw
ρ

(
µ

µw

)2

H0C

(
dF0

dz

)2

+
f2(xs)

xs
+
C1/2

ε

dF3
0

dz3
= 0,

(3.32)

F(z = 0) =
dF0

dz
(z = 0) = 0, (3.33)

given the starting location xs and the parameter values; typically xs is taken to be
in the neighbourhood of 0.002. The effect of the particular location xs on the initial
flow properties enters the problem formulation through the values f3(xs), f2(xs) that
are used in the mass balance and x-momentum, respectively. Thus, equation (3.27)
provides the initial condition for the integration along the airfoil surface. As it turns
out, see also the next section, the evolution of the flow downstream does not depend
on the location xs, as long as this is restricted in the vicinity of the rounded leading
edge, chosen as the starting point. This is an indication that the form of the solution
as x increases constitutes a global attractor of the flow, in the context of the constant
rainfall model that is used in the present study.

4. Numerical solution
The numerical solution of the governing equations, valid for any distance x, for

flow past a curved surface, (2.7)–(2.17), or for flow past a flat plate, (3.2)–(3.10), is
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obtained following the same approach that was used by Pelekasis & Acrivos (1995)
in their study of forced convection and sedimentation of colloidal solid particles past
a flat plate. More specifically, the transverse velocity in both phases is expressed in
terms of the longitudinal one through an integral relation that arises upon application
of continuity. This leaves only one unknown function to be calculated numerically
in the gas stream, namely the longitudinal velocity which is obtained by solving the
modified x-momentum equation, along with the location of the interface. In this
fashion (2.8) becomes

U
∂U

∂x
+

(∫ Y

εH

−∂U
∂x

dY

)
∂U

∂Y
+ ε2

µ

µw

(
u

dH

dx
− f3(x)

)
= −dP

dx
+
∂2U

∂Y 2
, (4.1)

where the interfacial mass balance (2.13) has been introduced in the above equation
in order to replace the value of the transverse velocity at the interface. A similar
equation is obtained for the film after application of continuity in (2.15):

ε2
ρw

ρ

(
µ

µw

)2(
u
∂u

∂x
+

(∫ y

0

−∂u
∂x

dy

)
∂u

∂y

)
= −dp

dx
+

1

Fr

(
ρw

ρ
− 1

)(
sin β

∂x

∂x0

− cos β
∂x

∂y0

)
+

1

ε

∂2u

∂y2
. (4.2)

The discretization of the x-momentum in both phases is described in the following
and in most aspects it follows Pelekasis & Acrivos (1995).

Owing to the parabolic nature of the problem in the x-direction, time-like inte-
gration is performed in order to capture longitudinal variations of the unknown
quantities via the second-order-accurate, O(∆x2), implicit trapezoidal rule. Owing to
the very large longitudinal derivatives near the leading edge for flow past a flat plate,
the integration starts at a streamwise location x = xI near the leading edge using
the asymptotic result obtained as x → 0. This does not affect the solution far from
the leading edge, which indicates that the solution as x → ∞ probably possesses
similar properties, as an attractor, to the asymptotic solution presented by Nelson et
al. (1995) assuming constant flow rate of the film. In the case of flow past a curved
surface (in the present study the upper surface of a NACA-0008 airfoil was used) the
flow near the leading edge is characterized by zero shear so there was no problem
with initiating the time-like integration, as was the case with the flat plate for which
shear becomes infinite at the leading edge. However, there was an issue of a different
kind that had to be resolved, pertaining to the incorporation of the effect of gravity
near the leading edge. More details on the numerical treatment of this issue are given
at the end of this section.

In order to simplify the spatial discretization while working with a fixed mesh, we
rewrite the governing equations in terms of Ȳ = Y /H(x), ȳ = y/H(x). In the case of
an airfoil ε is not set to one and the chord length is used as the characteristic length
scale in the x-direction. As a result ε is treated as an extra parameter of the problem.
The resulting set of equations is discretized in the transverse direction via the Galerkin
finite element method with the B-cubic splines as basis functions. Integration by parts
eliminates second-order derivatives and increases the accuracy of the method to O(h3)
where h is the size of the largest element. Special care is taken to verify the behaviour of
the problem at infinity by doubling the length along the transverse direction that is dis-
cretized, and monitoring the value of the longitudinal velocity at the outer edge of the
mesh so that it remains unchanged. Normally, a combination of 50 elements in the gas
phase, 20 elements in the water film and a thousand steps in the x-direction was enough
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Figure 5. Evolution of the dimensionless film thickness, H , with varying location, x0, on the airfoil
surface where time integration starts; β = −5◦, Fr = 67, ε = 0.507.

for the accurate description of the system within the third or second, at worst, signifi-
cant digit. The procedure described above eventually gives rise to a set of nonlinear al-
gebraic equations which is solved by Newton’s iterations. More details on the problem
reformulation in order to facilitate numerical solution, and on the finite element dis-
cretization via B-cubic splines in conjunction with time integration are given in Peleka-
sis & Acrivos (1995) and Pelekasis, Tsamopoulos & Manolis (1992), respectively.

The dependence of the downstream flow pattern at the location on the airfoil where
time-like integration commences was investigated extensively. As was mentioned in
the previous section, the flow quickly acquires its downstream structure irrespective
of the starting location xs. Figure 5 shows the evolution of the film thickness for
three different starting locations xs for the case with Fr = 67, β = −5◦, ε = 0.5.
The relatively wavy pattern in the evolution of the film thickness is due to the
abrupt change in radius of curvature near the leading edge. The initial condition
for each starting location was obtained via numerical solution of (3.28)–(3.33) using
the methodology for the discretization in the transversal direction that was described
above. ‘Packing’ of the elements near the interface in the gas phase was found to
improve significantly the accuracy of results for certain parameter values. Owing to
the nonlinear nature of the set of equations mentioned above multiple solutions were
obtained. However only the one with positive longitudinal velocities in both phases
was kept as it was the only one predicting physically meaningful velocity profiles.

Owing to the small value of Fr and the negative value of angle β, gravity counteracts
pressure in the region between the leading edge and the position of maximum
chord width, thus bringing about the early appearance of a Goldstein singularity.
Nevertheless, the starting location of time-like integration in the x-direction does not
affect the position where the singularity occurs, nor does it affect the downstream
velocity profiles. In fact, it was found that the details of the initial velocity profile at xs
do not affect the downstream flow properties either, which also attests to the conjecture
that the flow pattern obtained as x increases constitutes a global attractor of the flow.

The appearance of Goldstein singularities was a recurring theme in the present
study. As will be seen in the next section they always appear at the airfoil wall and
they are associated with vanishing shear stress, indicating flow reversal and eddy
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Elements Elements
∆x in the film in the gas xsin Hsin

(
∂u

∂z

∣∣∣
z=0

)
sin

Fr = 67

10−3 20 50 0.150 0.888 0.028
0.5× 10−3 20 50 0.1495 0.873 0.043
10−3 40 50 0.150 0.888 0.028
10−3 20 100 0.150 0.888 0.028

Fr = 269

10−3 20 50 0.415 2.328 0.008
0.5× 10−3 20 50 0.4145 2.328 0.007
10−3 40 50 0.414 2.328 0.008
10−3 20 100 0.414 2.327 0.008

Fr= 1077

10−3 20 50 0.534 3.019 0.013
0.5× 10−3 20 50 0.534 3.061 0.009
10−3 40 50 0.534 3.019 0.013
10−3 20 100 0.534 3.018 0.013

Table 1. Convergence tests for the location of the Goldstein singularity, for a NACA-0008 airfoil
when β = −5◦ and ε = 0.507.

creation, and an abrupt increase in the film thickness. As was mentioned in the
introduction they sometimes signify the onset of separation but not necessarily so.
The current formulation that imposes pressure drop as it is specified in the outer
layer cannot capture the flow region where eddies are formed, whether they arise
due to flow separation or not, because in such regions longitudinal and transverse
pressure drop are comparable in magnitude. This requires resorting to interactive
formulation of the boundary layer so that pressure changes in the film are reflected
in the gas stream. The proper context for such an approach is provided by the
triple-deck formulation that captures the effect of disturbances in the flow field on
the development of boundary layers, when the Reynolds number is sufficiently large
(Tsao, Rothmayer & Ruban 1997; S. N. Timoshin & A. V. Vaganov 2000, private
communication). In addition the simple marching numerical procedure adopted here
has to be modified in order to capture flow recirculation. For the purposes of our
study we will report the location where Goldstein singularities appear and use them
as a measure of the adversity of flow of the two-fluid-system with varying parameter
values. Table 1 gives the location of the singularity, xsin, as well as the value of the
film thickness and wall shear there when β = −5◦, ε = 0.5, for different levels of mesh
refinement and for different values of Fr: Fr = 67, 269, 1077. The small value of the
wall shear is evident as well as the accuracy of the computations (at least 3 significant
digits for the location of the singularity)

5. Solution valid when x ∼ 1

We are interested in obtaining velocity profiles at various downstream locations
on the solid surface which can then be used as the basis for stability analysis.
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Figure 6. Evolution of the velocity profile with increasing distance from the leading edge, for flow
past a flat plate, (a) in the film and (b) in the gas stream. The coordinates are scaled differently in
each phase for convenience.

As the distance along the surface increases, asymptotic solutions obtained near the
leading edge lose their validity and resorting to numerical solution, as described
in the previous section, becomes unavoidable. A summary of the findings of the
computational analysis is given in the following.

5.1. Flow past a flat plate

In this case it is the effect of inertia that builds up as the distance from the leading
edge increases and this is reflected in the slower growth of the numerically predicted
film thickness with x in comparison with the asymptotic solution, figure 2. Setting
ε = 1 defines a new length scale, L∗, as was already explained in § 3.1, and leaves the
ratio of densities and viscosities in the two phases as the only two problem parameters,
along with the angle β which is set to zero in this case for simplicity. Thus, for the
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air–water system, a single calculation is enough to provide us with all the necessary
information for the behaviour of flow past a flat plate for different values of the
rainfall rate, ṙ, the free-stream velocity, U∞, and the plate length, L. Calculating L∗
via ε = 1 and through it the ratio L/L∗ we have the range of dimensionless values
of x which are relevant to the particular set of flow parameters. As was pointed out
before, for moderate values of ṙ the asymptotic solution is more than enough for
the description of the system. This is due partly to the small film thickness, ε � 1,
but also to the small value of the quantity (ρw/ρ)(µ/µw)2 for the air–water system,
which determine the relative magnitude of film inertia. However, as ṙ increases, larger
values of dimensionless x become relevant and the asymptotic solution gradually
loses validity. This can be seen from figure 2 but also from figures 6(a, b) where the
evolution of the velocity profile is shown for the film and the gas stream, respectively,
with increasing x. The gradual change from the linear profiles, corresponding to the
simple shear conditions prevailing near the leading edge, to the parabolic-like profiles
obtained at very large distances is evident and attests to the effect of inertia. The
same pattern of linear axial velocity profile for most of the downstream region of the
film flow has been reported by Beckett & Poots (1972) in their study of condensation
heat transfer for planar geometry.

As was mentioned at the end of § 3.1 the similarity solution constitutes a valid
approximation for a wide range of the relevant problem parameters for flow past a
plate. Hence, the effect of rainfall and free-stream velocity on film growth can be
demonstrated by focusing on the effect that they have on the leading-order asymptotic
prediction for the dimensional film thickness obtained from (3.1),

H ′ = Hf

(
x′

L∗

)3/4
2√

0.332
. (5.1)

Upon close examination of the ratio (Hf/L
∗)3/4, along with (2.20), it is seen that

the dimensional film thickness, H ′, is inversely proportional to the 3/4 power of the
free-stream velocity, U∞, thus reflecting the effect of shear imposed from the boundary
layer on the film growth. On the other hand the effect of rainfall is to increase the
dimensional film thickness with the 1/2 power of the rainfall rate ṙ. However, for
very large rainfall rates the flow is described by the full equations, x ∼ 1, in most of
the plate. Then the growth rate of the film will be reduced by inertia, as was shown in
figure 2, and the effect on the dimensional thickness is not as obvious. Figure 7 shows
the evolution of H ′ with the distance from the leading edge, x′, for flow past a flat
plate with length, L = 1 m, of an air stream with free-stream velocity U∞ = 60 m s−1

and for a wide range of values of the rainfall rate, ṙ = 45, 180, and 360 mm h−1. The
trend of increasing film thickness with the square-root of the rainfall rate is evident
for the entire range of values of the latter quantity, as shown in figure 7.

5.2. Flow past the upper surface of a NACA-0008 airfoil

The effect of curvature on the flow pattern that is established above a solid surface
is investigated numerically using a NACA-0008 airfoil. Its exact shape, as well as its
aerodynamic properties are given in the literature (Abbott & Doenhoff 1949). First,
the effect of increased film thickness is investigated through the increase of parameter
ε. As can be seen from figure 8(a), the growth rate of the film is not significantly
affected by the change in ε, except for the downstream region. This can be explained
in view of the asymptotic solution in the limit as ε→ 0, (3.24), and more specifically
by equation (3.26) which gives an estimate for the first-order correction in ε for the
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Figure 7. Evolution of the dimensional film thickness for flow past a flat plate and for increasing
rainfall rate; U∞ = 60 m s−1, β = 0◦.

evolution of the film thickness, that accounts for the effect of pressure drop in the film.
The latter acquires very large values in a thin region near the leading edge, figure 4(b).
Nevertheless it does not significantly affect the film growth rate, even as ε increases,
because the dimensionless film thickness, H , is very small in the same region. In the
region beyond the position of maximum airfoil thickness, the deceleration region, the
pressure drop quickly becomes significantly smaller, thus explaining the weak effect of
ε on the film growth rate. It can also be seen easily by examining (3.26) that increasing
ε results in a slight increase of the film thickness in the deceleration region of the
airfoil, where the pressure drop acquires small positive values, which is in agreement
with the numerical prediction for the evolution of the film thickness shown in figure
8(a). Of course, equations (3.24) and (3.26) have limited validity in the downstream
region where the effect of the adverse pressure gradient becomes important and the
film thickness increases abruptly as the flow seems to approach, without actually
reaching, a Goldstein singularity, figure 8(a). However, the total effect of increasing
ε, e.g. through ṙ, is to significantly increase the dimensional film thickness, H ′ = HfH
(figure 8b), basically through Hf which grows like ṙ1/2.

Another important effect of increasing ε can be gleaned from figure 9(a, b) where
the film thickness evolution is given for a wide range of rainfall rates, 22.5 <
ṙ < 5760 mm h−1, but for smaller chord length, L = 0.3 m vs. 1 m, and free-stream
velocity, U∞ = 50 m s−1 vs. 60 m s−1, compared to figures 7 and 8(a, b), so that Fr is
now 855 rather than 360. Again, as in figure 8(a, b), the dimensionless film thickness is
increasing slightly with increasing ε while the dimensional one is increasing like ṙ1/2.
Nevertheless, in the case of larger Fr, figure 9(a, b) reveals a stronger tendency of the
flow to exhibit Goldstein singularities in the downstream region of the airfoil. This
can also be seen in figures 10(a, b) and 11(a, b) where the evolution of the velocity
profile inside and outside the film is shown at different downstream locations when
the flow evolves until far downstream (figure 10a, b) and when the flow exhibits a
Goldstein singularity early in the downstream region (figure 11a, b). In the former
case, despite the fact that the flow remains ‘regular’, the effect of the adverse pressure
gradient is evident in the velocity profile in the liquid film, figure 10(a), through the
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Figure 8. Evolution of (a) the dimensionless film thickness for flow past a NACA-0008 airfoil,
as predicted by the asymptotic solution as ε → 0, equation (3.24), and for increasing values of
ε = 0.107, 0.428 (β◦ = 0, Fr = 369); (b) the dimensional film thickness with increasing rainfall rate
(L = 1.0 m, U∞ = 60 m s−1, ṙ = 22.5 mm h−1, when ε = 0.107, ṙ = 360 mm h−1 when ε = 0.428).

reduction in shear at the solid surface and the appearance of an inflection point in
the velocity profile in the gas stream, figure 10(b). On the other hand, the vanishing
velocity gradient at the wall in the liquid film can be clearly seen in figure 11(a) near
x = 0.7. The reason for this phenomenon is the adverse pressure gradient that the
flow encounters in the downstream region of the flow, that is imposed on it by the far
field. This adverse pressure gradient opposes downstream film flow, hence the steep
rise of the film thickness near the point where the singularity arises in figure 9(a, b).
The same type of film growth was observed near the point of singularity by Beckett
& Poots (1972) in their study of boundary layer flow past a cylinder in the presence
of film condensation. When Fr = 360 gravitational forces play an important role
counteracting pressure forces, since the angle of attack β is positive and the pressure
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Figure 9. Evolution of (a) the dimensionless film thickness for flow past a NACA-0008 airfoil, with
increasing values of ε; (b) the dimensional film thickness with the equivalent increasing values of
the rainfall rate ṙ (L = 0.3 m, U∞ = 50 m s−1, β◦ = 0, Fr = 885).

drop is significantly reduced in magnitude far from the leading edge of the airfoil,
thus postponing the advent of singularity. As Fr increases, the effect of gravity is
decreased and the appearance of singularities becomes possible.

It should be noted that inflection points appear in the velocity profile in the
gas stream in figure 11(b) as well. Moreover they appear before the appearance of
singularities, indicating that eddy formation as a dynamic effect might anticipate
the effect of singularities in the two-fluid system (Bhaskaran & Rothmayer 1998).
Computations cannot proceed beyond this point because, as was mentioned in the
previous section, the longitudinal pressure drop in the bulk of the gas stream is
affected by pressure changes in the boundary layer as well as the liquid film. Thus,
interactive boundary layer formulation or condensed boundary layer formulation
becomes indispensable, either in the context of triple-deck theory (S. N. Timoshin
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past a NACA-0008 airfoil, (a) in the film and (b) in the gas stream; L = 1.0 m, U∞ = 60 m s−1,
ṙ = 360 mm h−1, β◦ = 0, Fr = 369. The coordinates are scaled differently in each phase for
convenience.

& A. V. Vaganov 2000, personal communication), or via strong coupling numerical
methods (Fletcher 1988).

It should be noted also that as ε increases, while still remaining relatively small
ε < 0.6, the point of singularity is transferred upstream. This seems to negate the
expected lubricating effect of water on the flow of air. However, this should be
anticipated since in the limit as ε→ 0 inertia drops out of (2.15) and the lubricating
properties of water – high density and low viscosity – play no role in the solution. Then,
as ε increases, the effect of pressure drop, which basically balances viscous shear, is
intensified resulting in larger positive values of the second derivative, ∂2u/∂y2, near
the surface. This, combined with the fact that the second derivative is expected to
be negative at the outer edge of the boundary layer in the gas phase, leads to the
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Figure 11. As figure 10 but for L = 0.3 m, U∞ = 50 m s−1, Fr = 885.

conclusion that an inflection point will appear in the velocity profile. In fact, it
will first occur near the airfoil surface and its occurrence is accelerated with further
increasing values of ε. This pattern persists as long as ε does not grow significantly,
in which case inertia becomes important, generating a lubricating effect and moving
the singularity downstream: the curve corresponding to ε = 1.328 in figure 9(a) with
ṙ = 360 mm h−1. Therefore, a critical film thickness exists beyond which water has a
lubricating effect on the gas stream.

The effect of gravity in the flow of the water film is incorporated in the Froude
number, Fr. When angle β is positive, referring to a take-off situation, gravity assists
the flow of the film towards the downstream region where an adverse pressure gradient
exists. As Fr decreases the beneficial effect of gravity is evident in the delay of the
appearance of the singularity, figure 12. On the other hand, when angle β is negative,
referring to a landing situation, gravity acts in the opposite direction to the main flow
resulting in an early appearance of the singularity, sometimes even before the position
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L = 0.3 m, U∞ = 50 m s−1, Fr = 885, β = 0◦

ε xsin

0.083 —
0.0166 0.788
0.332 0.713
0.664 0.596
1.328 0.659

ε Fr β(deg.) xsin

0.664 428 +5 —
0.664 1710 +5 0.662
0.507 67 −5 0.150
0.507 269 −5 0.415
0.507 1077 −5 0.534
0.545 606 +5 —
0.545 606 0 0.712
0.545 606 −5 0.490

Table 2. Location of the Goldstein singularity with varying parameters of the problem.
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Figure 12. Evolution of the dimensionless film thickness with increasing distance from the leading
edge and varying Fr for positive (β = 5◦, ε = 0.664) and negative (β = −5◦, ε = 0.507) angles.

of maximum chord width is reached. In this case increasing Fr decelerates the advent
of singularity, figure 12. In general, negative angles produce an unfavourable situation
for the film flow, enhancing the appearance of singularities and consequently flow
reversal, whereas positive angles act in such a way as to sustain continuous film
flow. It should also be noted that in the latter case, β > 0, decreasing Fr results in
reduction of the critical value of ε, or equivalently reduces the critical rainfall rate
beyond which the water film actually acts as a lubricant, postponing flow reversal and
the formation of eddies. The location of singularities for the cases shown in figure
9(a, b) and in figure 12 as well as those obtained by varying Fr and β are shown in
table 2.
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As was seen in § 5.1 for flow past a flat plate, the constant-rainfall-rate model
presented here predicts an increasing film thickness with increasing rainfall rate, ṙ,
and decreasing free-stream velocity, U∞. The same trend was found to exist in the
case of a curved surface, i.e. NACA-0008 airfoil. The effect of rainfall was discussed
extensively in § 5.2 and is depicted in figures 8 and 9. The effect of varying free-stream
velocity is twofold since it affects both Fr and ε. As U∞ increases Fr increases as
well, which results in the attenuation of the effect of gravity and the accompanying
deceleration or acceleration in the appearance of singularities depending on the sign
of β. At the same time ε is reduced, thus leading to slightly smaller dimensionless
film thickness. Figure 13 depicts this type of behaviour in the evolution of the
dimensionless film thickness with increasing U∞ and for typical values of the rest of
the parameters: ṙ = 360 mm h−1, L = 70 cm, β = 0◦. The appearance of singularities
with increasing U∞ is also evident. It should be noted, however, that the net effect of
increasing U∞ is a significant reduction in the dimensional film thickness, far from
the region near the singular point, due to the more pronounced reduction in Hf ,

Hf ≈ U−3/4∞ .
Clearly, the two geometries that were investigated exhibit qualitative similarities

as regards the evolution and growth of the water film. This is, partly, attributed to
the fact that the shape of the NACA-0008 airfoil does not differ significantly from
that of a flat plate due to its relatively small maximum thickness, 8% of the chord
length. A major difference between the two flow situations lies in the airfoil curvature,
which generates adverse pressure gradients in the downstream region of the airfoil.
Such pressure gradients are known to cause flow separation. However, this does
not happen as often as one might expect because gravity, especially when the angle
β > 0, counteracts pressure and allows continuous film flow. Figure 14 compares
the dimensional film thickness, H ′, as a function of x′ for a representative set of
parameter values, U∞ = 35 m s−1, ṙ = 360 mm h−1, L = 0.7 m, β = 0, with x′ denoting
distance along the plate and the airfoil upper surface. As can be seen from the two
curves in figure 14 the predicted film thickness is similar in order of magnitude with
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Figure 14. Evolution of the dimensionless film thickness as predicted for flow past a flat plate and
for flow past a NACA-0008 airfoil; L = 0.7 m, U∞ = 35 m s−1, β = 0◦, ṙ = 360 mm h−1.

the difference that, near the leading edge, the airfoil exhibits a slower growth rate due
to its more rounded shape that does not capture raindrops as efficiently, and in the
downstream area adverse pressure gradients lead to increased film thickness on the
airfoil surface. The latter effect becomes more pronounced as U∞ increases, in which
case the adverse pressure gradients in the downstream region are large enough to
produce Goldstein-type singularities.

Such discrepancies, however, are not particularly important since the region where
most of the interesting dynamic phenomena evolve is before the x′/c = 0.6 location
and after the rounded region near the leading edge. Indeed this has been observed
by various researchers who conducted experiments with test wing sections in wind
tunnels under conditions that simulate rainfall. As was mentioned in the introduction,
Feo & Gonzalez (1988) and Hastings & Manuel (1985), among others, measured film
thickness characteristics in the wind tunnel facility at NASA-Langley, and they
captured the increase in film thickness with increasing rainfall rate, or equivalently
with increasing liquid water content in the air stream, and decreasing free-stream
velocity, or with decreasing Reynolds number in the gas stream. In addition, they
observed the formation of longitudinal waves in the region 0.1 6 x′/c 6 0.5 of a
NACA 64-210 airfoil followed by three-dimensional rivulets. Thus, they attributed
the reduced aerodynamic performance of the airfoil under rainfall conditions to
premature boundary layer separation.

6. Conclusion
Upon comparison of the results shown here with those obtained via experimental

investigations we can conclude that the general trends in the film behaviour as a
function of the rainfall rate and the free-stream velocity have been captured. The
maximum film thickness that was measured for similar values of the control variables,
even though it is in general larger than the one predicted here, is of the same order
of magnitude (0.5 mm). In addition, the conjecture of premature boundary layer
separation seems to be corroborated by the findings of the present study, to the extent
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that the singularities appearing on the airfoil wall can be associated with separation.
Nevertheless, there is every indication that the film presence can cause early flow
reversal and eddy creation (figure 9a, b), which is probably due to separation and
will, in any case, disturb the flow of the gas stream. Further research is required in
order to verify the connection between the appearance of singularities and separation,
and emphasis has to be placed on an interactive boundary layer formulation, (Tsao
et al. 1997); S. N. Timoshin & A. V. Vaganov (2000, personal communication). Of
course, this is all in the context of steady-state calculations. The evolution of the
film thickness occurs in a different fashion. This is a result of the wavy nature of
the interface which cannot be captured by the present study since it is an inherently
dynamic phenomenon. What has been captured is a reliable and almost quantitatively
correct steady state that can be used as a basis for our stability analysis. In fact,
for a wide range of parameter values the flat-plate geometry provides a reliable and
tractable starting point for examining the dynamic behaviour of boundary layer flow
in the presence of rainfall.

As was pointed out in the previous section, inflection points appear in the velocity
profile in the gas stream before the appearance of singularities or even when singu-
larities do not appear at all, (figures 10b, 11b). This is an indication that a Rayleigh
type of instability may arise that can also produce eddies before boundary layer sep-
aration takes place (Bhaskaran & Rothmayer 1998). Another dynamic effect that has
also to be accounted for is the appearance of Tollmien–Schlichting waves, which are
generated in the bulk of the gas stream, and interfacial waves which arise as a result
of the dynamic interaction between the film free surface and the boundary layer.
Such a task has already been undertaken by Pelekasis & Tsamopoulos (2001), for the
planar flow configuration obtained neglecting film inertia in the limit as x→ 0, with
interesting findings on the importance of interfacial waves in boundary layer stability.
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